Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(4): e25553, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38384550

RESUMO

Bioluminescence resonance energy transfer (BRET) is one of the most promising approaches used for noninvasive imaging of protein-protein interactions in vivo. Recently, our team has discovered a genetically encodable bioluminescent system from the fungus Neonothopanus nambi and identified a novel luciferase that represents an imaging tool orthogonal to other luciferin-luciferase systems. We demonstrated the possibility of using the fungal luciferase as a new BRET donor by creating fused pairs with acceptor red fluorescent proteins, of which tdTomato provided the highest BRET efficiency. Using this new BRET system, we also designed a mTOR pathway specific rapamycin biosensor by integrating the FRB and FKBP12 protein dimerization system. We demonstrated the specificity and efficacy of the new fungal luciferase-based BRET combination for application in mammalian cell culture that will provide the unique opportunity to perform multiplexed BRET assessment in the future.

2.
ACS Pharmacol Transl Sci ; 7(2): 375-383, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38357276

RESUMO

Noninvasive, real-time, longitudinal imaging of protein functions in living systems with unprecedented specificity is one of the critical challenges of modern biomedical research. Toward that goal, here, we report a platform fusion technology called activity-based protein profiling-bioluminescence resonance energy transfer (ABPP-BRET). This method provides an opportunity to study the post-translational modification of a target protein in real time in living systems in a longitudinal manner. This semisynthetic BRET biosensor method is used for target engagement studies and further for inhibitor profiling in live cells. The simplicity of this method coupled with the critical physical distance-dependent BRET readout turned out to be a powerful method, thus pushing the activity-based protein profiling technology to the next level.

3.
Sensors (Basel) ; 23(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687774

RESUMO

This study demonstrates the development of a humanized luciferase imaging reporter based on a recently discovered mushroom luciferase (Luz) from Neonothopanus nambi. In vitro and in vivo assessments showed that human-codon-optimized Luz (hLuz) has significantly higher activity than native Luz in various cancer cell types. The potential of hLuz in non-invasive bioluminescence imaging was demonstrated by human tumor xenografts subcutaneously and by the orthotopic lungs xenograft in immunocompromised mice. Luz enzyme or its unique 3OH-hispidin substrate was found to be non-cross-reacting with commonly used luciferase reporters such as Firefly (FLuc2), Renilla (RLuc), or nano-luciferase (NLuc). Based on this feature, a non-overlapping, multiplex luciferase assay using hLuz was envisioned to surpass the limitation of dual reporter assay. Multiplex reporter functionality was demonstrated by designing a new sensor construct to measure the NF-κB transcriptional activity using hLuz and utilized in conjunction with two available constructs, p53-NLuc and PIK3CA promoter-FLuc2. By expressing these constructs in the A2780 cell line, we unveiled a complex macromolecular regulation of high relevance in ovarian cancer. The assays performed elucidated the direct regulatory action of p53 or NF-κB on the PIK3CA promoter. However, only the multiplexed assessment revealed further complexities as stabilized p53 expression attenuates NF-κB transcriptional activity and thereby indirectly influences its regulation on the PIK3CA gene. Thus, this study suggests the importance of live cell multiplexed measurement of gene regulatory function using more than two luciferases to address more realistic situations in disease biology.


Assuntos
Agaricales , Neoplasias Ovarianas , Humanos , Animais , Feminino , Camundongos , NF-kappa B , Linhagem Celular Tumoral , Proteína Supressora de Tumor p53/genética , Luciferases/genética , Agaricales/genética , Classe I de Fosfatidilinositol 3-Quinases
4.
Cell Oncol (Dordr) ; 45(5): 873-891, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35834098

RESUMO

PURPOSE: In this work for the first time, we showed specific and direct knockdown of important oncogenic proteins of interest and their phospho-PTM targets in tripartite motif containing-21 (TRIM21) overexpressing breast cancer (BC) cells. We revealed the functional and therapeutic consequences of this protein knockdown approach called 'TRIM-ing'. METHODS: To target HER2, HER3, STAT3 or their activated forms, electroporation and puls-in transfection were standardized for mAb delivery in AU565 and MCF7 BC cell lines. Cancer cells were treated with HER2-targeted medicines (Trastuzumab and Neratinib) or STAT3 targeted inhibitors (Stattic and Niclosamide) with or without respective target TRIM-ing. Real-time PCR, immunoblotting, immunofluorescence, cytotoxicity, short- and long-term cell survival assessments were done following standard methodologies. 3-D structure modelling was used to verify the binding of mAb onto the STAT3 target. RESULTS: TRIM-ing of HER2 or HER3 receptors or their activated phospho-forms in BC cells showed rapid degradation of respective protein forms, shattering down the downstream signaling (p-ERK, p-AKT) that lasts for up to 7-8 days. This significantly inhibited BC survival (p < 0.001), showing a synergistic therapeutic effect with HER2 medicine trastuzumab or neratinib. Additionally, specific TRIM-ing ability of canonical pY705 or non-canonical pS727 PTMs of STAT3 protein was demonstrated in MCF7 cells, causing significant cytotoxicity (p < 0.05). TRIM-ing of STAT3 PTM, when combined with the same PTM-specific inhibitors, a synergistic treatment effect was observed. CONCLUSION: The work demonstrated that TRIM-ing could directly reduce various oncogenic targets or their specific activated form inside the cancer cells without compensatory pathway activation, a conundrum limiting the therapeutic benefit of current personalized medicines.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptor ErbB-2/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Niclosamida/uso terapêutico , Medicina de Precisão , Resistencia a Medicamentos Antineoplásicos , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Linhagem Celular Tumoral
5.
Methods Mol Biol ; 2525: 239-257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836073

RESUMO

Proteins play an important part in almost all life activities and across all organisms. Proteins occasionally act on their own but rather fulfill most of their biological tasks by cooperating with other proteins or ligand molecules. The bioluminescence resonance energy transfer (BRET) assay serves to measure dynamic events such as protein-protein or protein-ligand interactions in vitro or in-vivo. With several inherent attributes such as rapid and fairly sensitive ratio-metric measurements, assessment of interactions irrespective of protein location within the cellular compartment, cost-effectiveness consenting to high-throughput screening compatibility, makes BRET a popular genetic reporter-based assay system for protein-protein interaction (PPI) studies. Based on the Förster principle, BRET allows to judge if the proximity has been achieved between the interacting partners. In recent years, the BRET application has emerged as a significantly versatile assay format by using multiple detection devices such as a plate reader or in-vivo optical imaging platform, or even a bioluminescence microscope has expanded its scope for advancing PPI studies. Beyond the scope of quantitative measurement of PPIs, molecular optical imaging applications based on BRET assay have expanded the scope for screening pharmacological compounds by unifying live cell and in-vivo animal-/plant-based experiments using the same platform technology. In this chapter, we have given intricate methodological details for performing in-vitro and in-vivo BRET experiments, primarily by using donor/acceptor reporter protein combinations.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Medições Luminescentes , Animais , Bioensaio , Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Transferência de Energia , Ligantes , Medições Luminescentes/métodos , Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...